
CoreASM REFSQ 2006 1

Design Exploration and
Experimental Validation of
Abstract Requirements

Roozbeh Farahbod1

Vincenzo Gervasi2

Uwe Glaesser1

Mashaal Memon1

1 Simon Fraser University, Vancouver, BC
2 University of Pisa, Italy

Design Exploration and
Experimental Validation of
Abstract Requirements

CoreASM REFSQ 2006 2

First slide

Formality

... but with controllable costs!

CoreASM REFSQ 2006 3

Talk outline

● Motivations
● Abstract State Machines in a nutshell
● CoreASM: an executable ASM language
● The role of CoreASM in RE

– Features of the language relevant for RE
– Features of the architecture relevant for RE

● Current state and future work
● Conclusions

CoreASM REFSQ 2006 4

Motivations

● Abstract State Machines (ASM) are known to
be effective in specifying and modeling a variety
of systems:
– Languages, protocols, reactive/embedded systems,

web services, information systems, social behavior,
CPUs and other hardware, ...

– Several books and hundreds of papers published
with examples (many of them quite large)

● Several compilers and interpreters for various
ASM dialect exist
– All of them targeted at detailed specification

CoreASM REFSQ 2006 5

Motivations

● Research question:
What does it take to profitably use ASMs at
the requirements or early design stages?

● Our answer:
– Design, specify and implement a language and

related tools optimized for high-level design
– Make rapid prototyping of abstract specifications

possible, enhance freedom of experimentation
– Provide all the advantages of executable

specifications (incl. validation)

CoreASM REFSQ 2006 6

ASM in a nutshell

● A signature Σ is a finite collection of function names f
– Each function name has an arity
– Nullary functions are called constants
– The constants true, false, undef are always defined

● A state A for Σ is a non-empty set X (the superuniverse of A)
together with an interpretation fA for each function name f in Σ
– If f is an n-ary function name of Σ, then fA : Xn→X

– If c is a constant of Σ, then cA∈X

● Functions can be static or dynamic
– The value of a dynamic function can change from state to

state

CoreASM REFSQ 2006 7

ASM in a nutshell

● A location is a pair l=(f,(a
1
,...,a

n
))

– The contents of l in A are fA(a
1
,...,a

n
)

● Locations can be updated
– Update u=(l,v)

– Update set U is a set of updates
– An update set is consistent if there are no clashing updates

to the same location
● Firing of updates moves from one state to the next:

AU l ={ v if l , v∈U
Al otherwise

CoreASM REFSQ 2006 8

ASM in a nutshell

● ASM specifications describe through updates
how the state of the specified system evolves
over time

● Important: values here are totally general
mathematical structures (abstraction)

● Rules:
– Updates: f(a1,...,an):=v
– Conditional: if b then P else Q
– Sequence and Parallel: P seq Q, P par Q
– Parallelism and nondeterminism: forall and choose

CoreASM REFSQ 2006 9

An example
● A fragment from a published ASM spec of the

Broy-Lamport problem (modeling RPC calls):
●

●

●

●

●

●

● ASM = Pseudo-code over abstract data

CoreASM REFSQ 2006 10

CoreASM: The very idea

Ground model

Detailed ground model

Problem

Code

Design

Construction

Coding

…

CoreASM

AsmL, XASM, …

Implementation
R

ef
in

em
en

t

Abstract Model

CoreASM REFSQ 2006 11

The CoreASM Project
● A lean, executable, and extensible ASM

language which is faithful to its mathematical
definition

● An extensible, platform-independent execution
engine

● A supporting tool environment for
– High-level design
– Experimental validation
– Formal verification

CoreASM REFSQ 2006 12

ASMs in RE

● Executability is a useful feature to have in RE
– Animation, tracing, validation, model checking, etc.

● But most executable specification languages
are costly

● CoreASM tries to change the economics and
make writing executable high-level
specifications convenient through
– Features of the language
– Features of the architecture

CoreASM REFSQ 2006 13

CoreASM – language features
● CoreASM is an untyped language

– Types can be declared and if they are, the spec will
be type checked

– But they are not compulsory
– Even better, partial typing is possible
– Spontaneous casts (e.g., from “12” to 12) as

needed
– Same spirit as scripting languages

● Makes writing “quick&dirty” specs possible
– Encourages experimentation,
– avoids early commitment

CoreASM REFSQ 2006 14

CoreASM – language features

● Non-determinism expressed through choose
clauses

● Abstraction expressed through:
– Oracle functions (e.g., value input by user)
– Abstract macros (e.g., executed symbolically)

● Both are explicitly marked
– No confusion between abstraction and ambiguity

● Distributed systems modeled by multi-agent
ASMs
– Scheduling policy can be left arbitrary or specified

CoreASM REFSQ 2006 15

CoreASM – architecture features

● We want to reduce the cost of writing a spec
● Hence, we have to reduce the cost of encoding

(from domain concepts to language concepts)
● Hence, we want to offer a domain-specific

language – for all domains...
● Hence, we designed an extensible language,

which can be adapted to several domains

● Net result: plug-in architecture

CoreASM REFSQ 2006 16

CoreASM – architecture features
● Plug-ins provide:

– New backgrounds
● Data types with operations, constants, literals and

notation, e.g.: trees
● Static or derived functions, e.g.: now for timed ASMs

– New rule forms
● Syntax and semantics to simplify writing, e.g.: signal

agent with value for communications
– New scheduling and choosing policies

● e.g.: priority-based agent scheduling
– Extensions to the execution cycle

● e.g.: preprocessing of source specs, or monitoring
updates

CoreASM REFSQ 2006 17

Kernel of a full environment

Standard

Numbers

Sets

Time

CoreASM EngineCoreASM Engine

CoreASM REFSQ 2006 18

The architecture

 Applications

Testing
EnvironmentGraphical UIVerification

Environment

Control API

Abstract
Storage Interpreter

Scheduler

Parser

CoreASM Engine

● Control API:
● interface to the

environment
● interface to the engine

● Parser
● builds an annotated

Abstract Syntax Tree
● based on grammar

fragments contributed
by plug-ins

CoreASM REFSQ 2006 19

The architecture

 Applications

Testing
EnvironmentGraphical UIVerification

Environment

Control API

Abstract
Storage Interpreter

Scheduler

Parser

CoreASM Engine

● Abstract Storage
● a representation of

the current state
● Interpreter

● generates an update
set, given an AST and
the current state

● Scheduler
● Orchestrates every

computation step
● Organizes the

execution of agents

CoreASM REFSQ 2006 20

A micro-kernel approach

● A micro-kernel approach
– Kernel provides the bare minimum structure

● Updates, true, false, undef, etc.
– Other language elements are provided by plug-ins

● Integers, sets, strings, etc.
● If-rule, choose-rule, block-rule, etc.

– Standard ASM features are provided by plug-ins in
the standard library

– Custom extensions can be implemented by custom
plug-ins

CoreASM REFSQ 2006 21

Extension points

Example: Loading Specifications

CoreASM REFSQ 2006 22

Example: Tabbed Block Rules

● A simple parallel block rule plugin may require
par and endpar

if flag par a:=1; b:=2 endpar else c:=3
● It doesn't look nice? Indentation looks better?

if flag
a:=1
b:=2

else
c:=3

● Using the extension points, a plugin can
– register itself to be called before the parsing mode
– read the indentation and convert it to par-endpar

CoreASM REFSQ 2006 23

Example: Spec of a language
● A fragment of the actual specification of

CoreASM (the language), showing domain-
specific constructs and use of abstraction

CoreASM REFSQ 2006 24

Example: Integration with Java

● For testing and verification purposes, it is useful
to have the formal specification interact with the
implementation

● A plugin provides integration with Java
– Instantiation of objects (create o as JavaClass)
– Calling methods, accessing fields (invoke o->m(...))
– Marshalling and unmarshalling (as spontaneous

casts) of basic types
– Marshalling and unmarshalling of Collection and

String (treated as significant special cases)

CoreASM REFSQ 2006 25

Example: Integration with Java

● Typical uses:
– Running self-checking, side-to-side parallel runs to

specification and implementation
– Accessing special OS interfaces from CoreASM

(e.g., sockets)
– Adding GUIs or GUI mock-ups to specifications

● Moreover:
– CoreASM engine can be called from Java
– Two-way interaction possible

CoreASM REFSQ 2006 26

Current state

● ASM specification of
– The kernel
– Basic ASM and Turbo ASM rule forms
– Numbers and Sets

● Working implementation of
– The kernel (minus a few low-priority functions)
– Most rule forms
– Numbers, Sets, Strings, etc.
– GUI (still rough edges, though)

CoreASM REFSQ 2006 27

GUI

CoreASM REFSQ 2006 28

Future work

● Complete implementation of the kernel
● Implementation of more sophisticated data

types as plugins
● Implementation of type checking, assertions,

invariants as custom plugin
– These do not exist in traditional ASMs

● Under consideration: rewrite the GUI as an
Eclipse plug-in
– Integration with modeling and development

environment

CoreASM REFSQ 2006 29

Conclusions

● Bringing RE concerns into formal language
design

● CoreASM guiding principles:
– Preservation of pure ASM semantics
– Ensuring freedom through extensibility

● Model-based engineering of abstract
requirements in early phases of design

● A platform-independent open source project
http://www.coreasm.org

CoreASM REFSQ 2006 30

Last slide
● Which quality features are addressed by the paper?

– Validation and verification through executable specifications
● What is the main novelty/contribution of the paper?

– A formal specification method which is designed to be low-cost and executable,
yet scalable to full-fledged formality

● How will this novelty/contribution improve RE practice or RE research?

– Support adoption of ASMs in industry
– Make formal methods practical in RE context

● What are the main problems with the novelty/contribution and/or with the
paper?

– Work in progress, effectiveness unproven
– Risk of loosing advantages of hard FMs if too much “hardness” is removed

● Can the proposed approach be expected to scale to real-life problems?

– ASMs are known to scale well (they have been used for large real-life problems)
– Scalability of investment and extensibility unproven, but apparently possible

